


 
 

genuen.com 1 
 
 

Introduction 
 
The exponential progress of technology of the last few decades equally creates 
opportunities and challenges for companies in the business of technology. The constant 
advancements in processing power, data storage and networking surely create fertile 
ground for innovation in all technical fields. In today’s interconnected world powered by 
such advancements, the likelihood of a good idea to emerge in competing 
environments is much higher than it was decades ago. This fact imposes a necessity for 
companies to turn around their ideas very quickly into high-quality customer ready 
products. Being first to market in today’s commercial environment can be the difference 
between a winner and a loser. 

Engineers and scientists were challenged to come up with alternatives for the lengthy 
process of manufacturing, debugging, and testing of physical components of a 
technology-heavy system. Arguably, any physical system can be approximately defined 
by a set of mathematical equations that describe not only how the system interacts with 
the environment that it is a part of, but also how it responds to external stimuli; those 
being signals from a giving control system actuator and/or random external 
disturbances. Leaving quantum physics aside for a moment and constraining the 
analysis on Newtonian physics of the macroscopic world, the dynamics of such systems 
follows a set of mathematical equations. 

The modeling of physical systems can be performed by a computer’s implementation of 
the system’s corresponding set of dynamic equations. As every computer is governed 
by a given digital clock, every computer-generated model is an approximation of the 
real physical system, and the implementation of its dynamic equations occurs in this 
quantized digital domain. 

Bélanger, et al. [2] defines real-time simulation as model execution where internal 
variables and outputs are calculated within the same length of time as a comparable 
physical system reacts to its environment. In other words, this definition determines that 
if a model can be executed within a certain time interval that is sufficiently small to 
provide an accurate enough approximation of the real physical system, it constitutes a 
real-time simulation. Furthermore, it can be extrapolated that the execution of the 
modeling equations within a certain time deadline is directly correlated with the 
accuracy of the simulation. 

This hypothesis was the one used by product engineers for the adoption of modeling 
and simulation as a suitable replacement for time consuming physical builds during the 
design process. The technique was embraced as fundamental in helping designers to 
tackle the development velocity-quality dichotomy of the modern world. Fagcang, et al. 
[1] presents a very interesting plot demonstrating the level of adoption of simulation by 
the scientific community over the years. 

 
 



 
 

genuen.com 2 
 
 

 
 

Figure 1. Rise of IL and HIL Publications Over Time 
 

Real-time modeling and simulation tools saw a relatively proportional uptick in 
innovation. So much so that the task of simulating a system became much more 
comprehensive. Not only the plant, i.e., the physical system, was being modeled and 
simulated, but their control systems, actuators, test systems, and virtually all 
components of the expanded system. The term X-in-the-loop (XIL) was born, and it 
represented the combination of the different in-the-loop (IL) sub-systems that had to 
work together on an overall simulation of the entire system. 

The development process for in-the-loop systems then evolved into a sequence of tasks 
similar to: 

1. Controller and physical system models are created with the aid of simulation 
tools, the model-in-the- loop (MIL) phase, in Vijayagopal, et al. [3]. 

2. Controller models are translated to low-level code and driven to interface with 
the plant model, the software-in-the-loop (SIL) phase, in Bringmann and Krämer 
[4]. 

3. Controller firmware is deployed to embedded systems and driven to interface 
with the plan model still running in simulation environment, the PIL phase, in 
Mina, et al. [18]. 

4. plant model is deployed to appropriate hardware, exposing the overall system 
to a more realistic environment of interfaces with sensors and actuators, the 
HIL phase, in Brayanov and Stoynova [5]. 

5. Test data acquired during the HIL phase is cross referenced against data 
acquired during the MIL phase for system validation, the regression testing 
phase. 

 
 



 
 

genuen.com 3 
 
 

 
 

Figure 2. MIL, SIL, PIL, HIL Phases [17] 
 
Modern Real-Time XIL 
 
Up until a few years ago, the sequence of tasks presented in the previous section 
dominated the way real-time XIL simulation was implemented. Typical real-time in-the-
loop control nodes, namely Engine Control Units (ECUs) in the more specific context of the 
transportation industry as an example and here on out used interchangeably with control 
nodes, were historically single-processor machines. They typically executed algorithms on 
inputs coming solely from sensors directly connected to their hardware inputs. These 
algorithms generated control signals that were routed to actuators, also directly connected 
to the ECUs hardware and to the plant model. 
 

 

 

Figure 3. Typical Real-Time XIL System 
Configuration 

 

The increased complexity of modern real-time systems has driven systems to distributed 
control architectures. In such designs, the overall system control loop is implemented 
through a series of interdependent control nodes. Each of these controllers executes real-
time control loop algorithms utilizing inputs not only coming from sensors physically 
connected to its processing unit, but also require data generated by the other control 
nodes. 



 
 

genuen.com 4 
 
 

The distribution of the overall control system as physically separated, albeit 
interdependent, control units drove the corresponding split of a single plant model into 
several plant sub-models. Now, instead of having a simulated system as the typical one 
displayed in figure 3, systems started migrating to the distributed configuration 
presented by figure 4. 

 
 
 

 
 
 

Figure 4. Distributed Real-Time XIL System 
Configuration 

 

As it can be seen in Figure 4, even though the typical single-processor simulated system 
illustrated in Figure 3 has been broken down on multiple sub-system, they are in fact not 
independent from each other. Since they are all working in tandem to achieve a single 
system-level objective, the multiple ECUs and sub-plants are required to exchange data 
amongst themselves. Also, even though each ECU is responsible to generate control 
signals that will control its corresponding sub-plant, it needs to have information about 
the other ECUs state data to include in its algorithm. The same idea is valid for the sub-
plants. Even though each sub-plant is running its own simulation model, it needs to 
have information about the other sub-plants state data to include in its own model 
equations. This allows the entire plant dynamics to be correctly approximated and 
simulated as a whole, even though multiple processor units are executing smaller 
chunks of the dynamics. 



 
 

genuen.com 5 
 
 

It is important to keep in mind that the goal of the real-time simulation is still the same 
as defined by [2], regardless of the type of configuration. Therefore, the distributed real-
time XIL configuration illustrated in figure 4 suggests the need for a low-latency real-
time network to ensure each ECU and sub-plant of the distributed system have all 
information they need to run their own models within their real-time iteration rates. 
Therefore, the challenge for the ubiquitous implementation of distributed real-time XIL 
systems can be focused in solving the problem or high-speed low-latency real-time 
network communications. 

 
Distributed XIL Challenges 

 
As the previous section concluded, the most important challenge on distributed real-
time XIL systems is related to the real-time data transfer between the multiple ECUs and 
sub-plants that implement the entire system. Network technology has certainly evolved 
over the course of the last decade, allowing for increased data transfer bandwidth. 
However, latency on the data transfer remains a challenge for distributed real-time 
systems. The data transfer latency is a direct influencer on the performance of any real-
time system, as such unforeseen communication delays may invalidate the model 
engineering if the physical system can no longer be approximated well enough by the 
digital equations. 

Moreover, TCP-based networks add jitter on top of the extra latency of distributed 
systems. Some technologies can be used for the mitigation of this issue, namely UDP [6], 
EtherCAT [7] and Time Sensitive Networks (TSN) [8]. However, these techniques are 
insufficient for systems where models are required to execute at a real-time rate beyond 
the typical empirical 1-5KHz limit; the sweet spot for the techniques mentioned. 

Reflective memory (RM) [9] is another technology that showed promise when it first 
appeared. In a RM network, a copy of the entire memory composed of the states from all 
nodes is kept locally by each network node. It is a special memory sharing system 
between multiple nodes in a network [10]. Figure 5 illustrates a typical RM network 
topology. 

 
 



 
 

genuen.com 6 
 
 

 

 
 
 

Figure 5. Reflective Memory Typical Network 
 

When a node needs to make a write operation to the RM network, it places a typical TX 
request to the next node in the ring. The next node in turn reads the data and makes a 
TX request with the same data that it just read to the next node down the ring network. 
The process is repeated until the data makes a complete round in the network and is 
returned to the original writer node. One of the main advantages of this technique is 
that RM nodes can make updates to a mapped local memory range independently from 
the node’s CPU, as in [11]. Therefore, the local RM copy can be updated on a much higher 
speed than a given application running on the local CPU that will in turn consume the 
data. This allows for a higher-speed hardware-based operation to guarantee a level of 
real-time determinism in the updating of the virtual local memory. 

Even though it is possible for a RM network to be configured in a star topology, the extra 
latencies and data overhead added by the required routing tasks ends up 
approximating the real-time updating speed of the RM to the typical ones achieved by 
other technologies such as RT EtherCAT. This led to the use of a ring topology to increase 
real-time speed. However, the biggest problem of ring topology networks comes to play 
at the RM implementation; the entire network goes down if a single node is down. 



 
 

genuen.com 7 
 
 

Moreover, since each node needs to touch the data before an update of the RM space, it 
becomes obvious that the number of nodes and potentially their geographical location 
in relation to each other influence the performance of the real-time updates when it 
comes to speed and latency. Some attempts were made by the community to work 
around these constraints, such as in [12], [13] and [14]. However, they proved insufficient 
for the adoption of the technology on the implementation of real-time distributed XIL 
systems. 

The way some companies decided to address these challenges was through the creation 
of customized and very specific equipment targeted at distributed real-time XIL 
applications. Invariably, such solutions involve either some sort of proprietary hardware 
backplane communication bus [15] or the implementation of an FPGA-based proprietary 
protocol solution [16] for the connectivity of the multiple nodes. 

Both approaches are sub-optimal. First, a vendor-specific closed-architecture offering to 
address such foundational level problem as real-time low-latency communication 
constrains the user to only be able to select hardware and software components 
provided by this vendor or assume the risk of incompatibility between the multiple 
components of the distributed XIL system. This presents the obvious issue of the solution 
being constrained to the vendor’s offerings as opposed to the most applicable 
components to the given application that may be a combination of different vendors. 

Second, these types of solutions tend to be point-to-point in nature; especially the ones 
around FPGA- based communication protocols. This presents several limitations to the 
designer. First, the total number of nodes the overall system usually can only stretch to 
the maximum number supported by the point-to-point and data multiplexing hardware 
structure. Second, geographical location of the nodes becomes limited to the distancing 
specification of the given communication solution. Third, expandability of an existing 
system to include new components to implement modified systems become 
compromised. And lastly, work collaboration has increased significantly in the last few 
years. 

Collaboration may require a comprehensive strategy for the integration of existing XIL 
systems between multiple departments, research groups and potentially even multiple 
contractors. The retrofitting of existing XIL systems to potentially turn them into sub-XIL 
systems of a larger XIL simulation is not possible when each sub-system may be 
provided by a different vendor. 
 

Conclusion 
 

This paper presented an introduction to real-time XIL simulation systems and how 
technology advancements are driving the industry in the direction of distributed real-
time XIL systems. It demonstrated how the main challenge of such systems can be 
addressed through the solution of a multi-decade old problem, low-latency real-time 
network communications. It reviewed the existing technologies at the time of the 
writing of this paper that attempt to solve this problem and presented the limitations 
of each approach and how they are not a good fit for the implementation of distributed 
real-time XIL systems. 



 
 

genuen.com 8 
 
 

Vendor custom solutions partially address the problem, but on a very constrained 
manner. Unless vendors are willing to embrace the presence of competing solutions 
instead of trying to suppress them, it is very unlikely the industry will benefit from the 
freedom to select the components that are most appropriate for a given application. The 
continuation of this status quo is a clear barrier to the potential connection of existing 
XIL system from multiple vendors into larger distributed real-time XIL systems. 

RM certainly carries a lot of potential, provided its limitations on number and distance of 
nodes as well as the typical risks of ring network topologies could be addressed. Ideally, 
what the industry currently needs is a technology that could implement some sort of 
super-low latency high-speed real-time reflective memory solution over a typical star 
network topology. A technology like this, implemented on off-the-shelf equipment and 
existing network infrastructure, that offers an open architecture to allow multiple 
vendors to co-exist and be mixed with minimum limitations could be the silver bullet 
the industry needs. 
 

References 

 
1. Fagcang, H., Stobart, R., & Steffen, T. (2022). A review of component-in-the-loop: 

Cyber-physical experiments for rapid system development and integration. 
Advances in Mechanical Engineering, 14(8), 16878132221109969. 

2. Bélanger, J., Venne, P., & Paquin, J. N. (2010). The what, where and 
why of real-time simulation. Planet Rt, 1(1), 25-29. 

3. Vijayagopal, R., Michaels, L., Rousseau, A. P., Halbach, S., & Shidore, N. (2010). 
Automated model based design process to evaluate advanced component 
technologies. SAE technical paper, 01-0936. 

4. Bringmann, E., & Krämer, A. (2008, April). Model-based testing of automotive 
systems. In 2008 1st international conference on software testing, verification, 
and validation (pp. 485-493). IEEE. 

5. Brayanov, N., & Stoynova, A. (2019). Review of hardware-in-the-loop-a hundred 
years progress in the pseudo-real testing. Electrotech Electron, 54, 70-84. 

6. Larzon, L. A., Degermark, M., & Pink, S. (1999). UDP lite for real time 
multimedia applications. Hewlett-Packard Laboratories. 

7. Jansen, D., & Buttner, H. (2004). Real-time Ethernet: the EtherCAT solution. 
Computing and Control Engineering, 15(1), 16-21. 

8. Finn, N. (2018). Introduction to time-sensitive networking. IEEE 
Communications Standards Magazine, 2(2), 22-28. 

9. Jovanovic, M., & Milutinovic, V. (1999). An overview of reflective 
memory systems. IEEE concurrency, 7(2), 56-64. 

10. You, T., Du, C. L., & Zhu, Y. A. (2009, August). Supporting technology for virtual 
numerical control system based on RTX and reflective memory network. In 



 
 

genuen.com 9 
 
 

2009 Fifth International Conference on Natural Computation (Vol. 1, pp. 319-
323). IEEE. 

11. Bian, Z., Xie, L., & Wu, B. The FPGA Design and Implementation of Reflective 
Memory Card Based on the PCIE Bus. 

12. Shen, C., & Mizumuma, I. (2000). RT-CRM: real-time channel-based 
reflective memory. IEEE Transactions on Computers, 49(11), 1202-1214. 

13. Jacunski, M., Moorthy, V., Ware, P. P., Pillai, M., Panda, D. K., & Sadayappan, P. 
(1999, January). Low Latency Message-Passing for Reflective Memory Networks. 
In International Workshop on Communication, Architecture, and Applications 
for Network-Based Parallel Computing (pp. 211-224). Springer, Berlin, 
Heidelberg. 

14. Hasegawa, M., Nakamura, K., Zushi, H., Hanada, K., Fujisawa, A., Mitarai, O., ... & 
Higashijima, A. (2015). Development of a high-performance control system by 
decentralization with reflective memory on QUEST. Fusion Engineering and 
Design, 96, 629-632. 
 

15. Backplane (2022). 
https://www.dspace.com/en/inc/home/products/hw/simulator_hardware/scal
exio.cfm#175_58972. 
 

16. FPGA (2022). https://www.opal-rt.com/fpga-and-i-o-expansion-box/ 
 

17. Shepard, Jeff (2022). How do MIL, SIL, PIL and HIL simulation and testing relate 
to MBSE. https://www.eeworldonline.com/how-do-mil-sil-pil-and-hil-
simulation-and-testing-relate-to-mbse-faq/ 
 

18. Mina, J., Flores, Z., López, E., Pérez, A., & Calleja, J. H. (2016, June). Processor-in-
the-loop and hardware-in-the-loop simulation of electric systems based in 
FPGA. In 2016 13th International Conference on Power Electronics (CIEP) (pp. 
172-177). IEEE. 

 

 


