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Introduction 
 
In our first white paper on the subject [1] we discussed the most typical problems currently 
constraining the advancement of distributed real-time XIL simulation systems. It 
demonstrated how low-latency real-time networks higher performants than the state-of-
the-art are required for significant progress to be made on modern distributed real-time 
XIL systems. It presented the shortcomings of the current custom solution offered by 
industry vendors and alluded to the promise of Reflective Memory (RM) technology as a 
candidate solution to the problem. 

This paper proposes a potential solution to the problem. It offers the utilization of Remote 
Direct Memory Access (RDMA) [2] to significantly improve the typical implementation of 
RM networks. It also shows how the two technologies can be combined onto an off-the-
shelf open architecture solution that implements a low-latency real-time network on 
existing infrastructure that is orders of magnitude superior to the current state of the art. 

 

The RDMA Technology 
One of the obvious challenges of distributed XIL systems, real-time or not, is data exchange 
between its multiple nodes. Data traffic has been an area of study for several years. Some 
decades ago, the focus of the literature was on the creation of data transfer protocols that 
allowed sufficient data to be moved from point A to point B. This focus yielded different 
data exchange protocols that dominated the industry such as the typical RS-232 [3], RS-485 
[4] and GPIB [5]. As data transfer requirements increased on more modern applications, 
these protocols somewhat fell out of favor and started to be replaced by PCI bus and 
consequently PCIe [6] bus, with their offer of order of magnitude higher data transfer 
specifications.  

As the data volume capacity and transfer rate increased, one characteristic of the protocol-
based approaches remained unchanged: the need for CPU time to be allocated to the data 
movement task from these buses to the processing unit memory space. As data volume 
and transfer rate requirements increased, so did the complexity of the data consuming 
applications, driving the need for processing power to be even higher. The increase of 
processing power on available low-cost CPU chips indeed followed Moore’s law. However, 
this approach quickly found the wall of processor temperature control, hampering the 
long-term needs for the continuously increasing data processing capacity. 

Direct Memory Access (DMA) [7] was the community’s answer to this limitation. The 
concept of DMA was as simple as it was elegant. Data movement from the PCI/PCIe bus to 
the processing unit memory would be CPU-free, executed by a separate entity, the DMA 
controller. With this, CPUs were free from the taxing data transferring task, and could be 
dedicated to the processing data application. DMA on PCI/PCIe bus data transfer has 
indeed been and still is currently used on data exchange systems. This technique however 
is applied to single processor systems. 

In the realm of distributed systems, the data exchange problem remained unsolved as 
computational cost of network I/O is very high once the CPU kernel is involved in the 
handling of network traffic. Unless a new paradigm was proposed, this problem would 
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most likely remain open even as network bandwidth on existing off-the-shelf infrastructure 
continued to improve, as the burden of data exchange would only increase for the system 
CPUs. This fact drove the community to focus research on expanding the single-CPU DMA 
paradigm to systems of multiple nodes. The high-performance computing industry was 
one of the biggest drivers of advancements of the technology. GPU clusters [8] and some 
cloud computing experiments [9] were made on high-performance parallel computing 
applications with some success. However, these approaches were still insufficient to meet 
the low-latency requirements for the specific case of distributed real-time XIL applications. 

The bullseye for distributed real-time XIL systems continued to be on a technology that 
could offer CPU-free low-latency data exchange between multiple distributed nodes. 
Remote Direct Memory Access (RDMA) is a protocol aimed directly at solving the high-
performance computing key steps [10]. Its chief concept is the utilization of hardware-
based network interface cards (NICs), often FPGA-based, that are responsible not only for 
performing protocol control, but also for executing direct read/write memory operations on 
remote nodes. The concept is the natural expansion of the single-CPU DMA idea onto 
several distributed nodes.  

As the CPU is not involved in the data exchange tasks and the dedicated NIC hardware is 
responsible for read/write remote node memory operations, latency of such networks can 
theoretically decrease significantly. Since the concept’s inception in the early 2000s, 
significant progress was made on the commercialization of the technology. This allowed 
for practical implementations to confirm that RDMA indeed is a significant network traffic 
latency reducer. Pre-RDMA latency measurements that were typically revolved around the 
millisecond range started to migrate to the tens of microseconds [11], culminating on some 
sub-microsecond clock synchronization [12] over Infiniband [13] networks.  

 
Reflective Memory 
Another technology of interest to the message passing in multi-node systems’ problem is 
Reflective Memory (RM) [14]. Like the RDMA technology presented on the previous section, 
RM’s main target was the addressing of latency of distributed network applications. 
However, RM was designed to facilitate multi-cast operations, an advantage over RDMA for 
distributed real-time applications.  

On an RM network, when a node needs to make a write operation to the RM network, it 
places a typical TX request to the next node in the ring. The next node in turn reads the 
data, updates its local reflective memory, and makes a TX request with the same data that 
it just read to the next node down the ring network. The process is repeated until the data 
makes a complete round in the network and is returned to the original writer node. One of 
the main advantages of this technique is that RM nodes can make updates to a mapped 
local memory range independently from the node’s CPU, as in [15]. Therefore, the local RM 
copy can be updated on a much higher speed than a given application running on the 
local CPU that will in turn consume the data. This allows for a higher-speed hardware-
based operation to guarantee a level of real-time determinism in the updating of the 
virtual local memory. 

Figure 1 illustrates an anecdotal RM network with four nodes. It is important to note that 
each NIC of the network is responsible for controlling traffic and maintaining a local copy of 
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the RM. The application running on the computer can then access data from the RM as 
needed.  

  

 
Figure 1. Reflective Memory Typical Network 

 
The concept of maintaining a local copy of the network state information to accelerate 
data access and reduce latency indeed holds great potential as a solution to the distributed 
real-time network problem. As such, there were several RM implementation variations 
along the years in the search for the silver-bullet to the problem. However, scalability of the 
network is a permanent issue across all different implementations. Evidently, the RM 
topology illustrated in figure 1 has each NIC being a single point of failure for the network. 
This fact drove the addition of redundancy nodes to accommodate mission-critical 
applications as one of the possible workarounds. However, since each node maintains a 
copy of the entire RM, the addition of redundant nodes creates an immediate increase in 
RM size, which in turn, creates a detrimentally proportional relationship with latency.  

A second obvious issue with this approach is that the RM network is not an off-the-shelf 
solution. It cannot utilize network infrastructure that may already be in place in the 
building, requiring specific and point-to-point installation. 
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The RM concept indeed carries promise, but a successful implementation must address 
the typical scalability and network infrastructure shortcomings.  

 
Proposed Solution 
The discussion presented so far suggests that the solution for the distributed low-latency 
real-time network problem may be found in a specific implementation of RM that solves its 
two typical shortcomings. This paper proposes the utilization of the RDMA technology on a 
RM implementation to address the issues.  

As presented, each node on a RM network is a single point of failure. One path to address 
this limitation would be the implementation of a star topology RM network. However, once 
the RM nodes are distributed in a star topology, the original paradigm of read message-
>update RM->pass message along, is no longer applicable. At this point, a switched 
solution becomes necessary, bringing back the problems of the other more typical data 
exchanged approaches explored on a previous section of this work. 

This paper proposes leveraging of RDMA technology for the data exchange layer of a RM 
implementation that potentially doesn’t carry the same issues as its typical 
implementations. Since RDMA was demonstrated to be a viable low-latency data exchange 
approach, it carries the potential to enable a star topology RM implementation. 

The second issue presented that is characteristic of RM networks is the requirement for a 
custom network that doesn’t utilize existing infrastructure. RDMA was originally deployed 
over Infiniband hardware. More recently, however, the need for reuse of existing network 
infrastructure motivated the community to expand RDMA to be deployed over what is 
called converged ethernet, or RoCE [16]. 

An important positive characteristic of RMs that made it a good fit for distributed real-time 
applications is the easy of multicast operations. It was therefore important that a star 
topology RM could maintain the comparable multicasting facilities. The answer to this 
requirement comes from an atomic broadcast protocol over RDMA implementation [17]. 
Broadcast protocols make distributed services fault tolerant, as they keep a total order of 
messages, allowing that multiple service replicas are kept in sync. However, they are 
usually computationally expensive. The protocol utilized by the proposed approach 
performs communication using one-sided RDMA writes, which do not utilize the remote 
machine CPU, and is designed to minimize waiting on the critical path. Figure 2 illustrates 
the high-level architecture of the proposed solution. 
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Figure 2. Proposed Solution Architecture 

 
The proposed solution theoretically allows the RDMA-based RM implementation to 
maintain the strengths of the typical RM solutions: CPU disengagement, low-latency 
synchronization, and appropriate multicasting facilities. On the flip side it strives to remove 
the constrains that arguably prevented typical RM implementations to be more widely 
used on distributed real-time XIL systems: single point of failure, scalability, and reuse of 
custom network infrastructure.  

 
Experimental Results 
Experiments were performed on Cloudlab, an open platform for running network 
experiments that gives exclusive access to the nodes [18]. In particular, the experiments 
used a cluster with nodes that have an Intel E5-2640v4 processor each running Ubuntu 
18.04 (for reference, Cloudlab calls this cluster xl170). Each node has 64GB of DRAM and a 
dual-port Mellanox ConnectX-4 25 GB NIC. The experiment network is confined to a single 
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chassis hosting a Mellanox 2410 switch that connects each core with 25Gb ethernet links 
that support RDMA over Converged Ethernet (RoCE).  

The RMs were all-to-all in the sense that all states of each node were broadcasted to every 
other node on the network. Therefore, a complete copy of all network states was kept as 
part of each node’s RM. A state is defined as a C-style floating point number.  

Figure 3 shows the plots of RM depth versus latency for a RM with 3, 5 and 7 nodes.  

 

 
 

Figure 3. RM Depth Latencies 

 

A linear ramp characterizes direct proportionality between the depth of the RM and 
network latency. In other terms, as the traffic in the network increases, the latency 
increases in a linear proportion. As the number of nodes is increased, the linear 
proportionality is maintained. In conclusion the latency of the RM network is directly 
proportional to the overall network traffic. Figure 4 characterizes the average latency per 
message size. 
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Figure 4. Latencies per Message Sizes 
 
As the messages get larger in size, the per byte computational cost goes down to a given 
limit fixed value. Below 100 nano seconds, the per byte cost is high due to the minimum 
RDMA protocol packet size. Therefore, larger message transmissions shall take precedence 
over smaller more frequent ones on the application layer for an overall lower 
computational cost per byte transmitted. 
 

Discussion and Future Work 
 
Distributed XIL applications’ data exchange doesn’t require typically high network traffic as 
does the more bandwidth-intensive applications such as data streaming. The main 
objective of the data exchange on distributed XIL systems stem from the fact that each 
node’s computation may require information that is being generated by one or more of the 
distributed nodes, in the same real-time clock tick. Therefore, a network traffic of several 
thousand states can accommodate a significant number of remote nodes exchanging 
several states between each other. 

As it can be seen on figure 3, latency values that would support rates well over 10kHz can 
be achieved to accommodate significant enough traffic volume for distributed real-time 
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XIL applications. These initial experiment results show the proposed approach to be a 
promising candidate to implement real-time distributed networks for this application 
category. 

Moreover, the current implementation can be optimized in a few specific ways to improve 
results further. The source code can be refactored for performance as the first pass of its 
implementation was focused on getting to the point of a qualitative order of magnitude 
analysis for approach feasibility as early as possible. The validation of the solution through 
the first pass analysis presented justifies refactoring of the prototype-level source code to 
one of production quality which very likely will improve the latency results further. 

Since it was demonstrated that network traffic is directly proportional to communication 
latency, some techniques can be applied to expand the utility of the solution to a greater 
number of XIL applications. The first one that shall be considered is the implementation of 
a publish-subscribe approach to the creation of the multiple node RMs, as opposed to the 
all-to-all method used on the first analysis.  

On the all-to-all approach, all states of all nodes are transferred and maintained in each RM 
node. On the publish-subscribe model, the network is configured with a priori information 
of which states from which nodes are relevant to a given node’s computation. Each node’s 
RM depth is then reduced to maintain only the states that will be used by the 
corresponding node computation, instead of being a complete copy of all network nodes’ 
states. This evidently is an application specific improvement, albeit an important one. On 
the all-to-all implementation, the RM real-time updates need to be the same for all nodes. 
On the publish-subscribe model, the RM network gains an extra level of flexibility where 
different nodes’ RMs may have different real-time update rates, depending on their depth. 
Without loss of generality, this indicates that multi-rate XIL systems can then be 
implemented.  

Ultimately, data compression may also be a technique that can potentially reduce the 
overall network traffic further. This may also carry an application specific aspect to the 
implementation as it will depend on the type of state that a given application requires. 
Therefore, data compression may have a bigger or smaller impact on the overall network 
traffic, depending on the characteristics of the system states for a given application. 

Lastly, as it can be noted on the experimental results section, the tests were executed on 
nodes running regular non-real-time operating systems. Once the above network traffic 
reduction techniques are implemented, the next natural step is the execution of the same 
tests on a RM network composed only by nodes running real-time operating systems for 
comparison of performance. 

 

Conclusion 
 
This paper presented a review of the existing network data exchange technologies, with 
special focus on potential solutions for the distributed low-latency real-time network 
problem. It presented RDMA as a low-latency data exchange technology of interest and RM 
as a candidate for a proposed solution, provided that two important shortcomings were 
addressed; scalability and lack of off-the-shelf offering. 
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It followed to propose a RDMA-based RM implementation as a possible solution to the 
problem. The approach suggests the utilization of RoCE to facilitate the use of existing 
network infrastructure. It implements RM on top of RDMA atomic broadcast operations to 
reduce the typical computational burden of broadcast operations that are required to keep 
distributed systems fault tolerant. 

Initial experiment results demonstrated excellent latency performance on an all-to-all RM 
implementation. Data suggests that a vast majority of real-time distributed XIL system 
could be implemented on tens of microsecond real-time loop rates. The data also showed 
latency to be directly proportional to network traffic. Therefore, future work shall focus on 
reduction of network traffic through either data compression, a publish-subscribe 
approach to reduce the amount of data kept by each local copy of RM or a combination of 
both. 
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