

genuen.com 1

Introduction

In our first white paper on the subject [1] we discussed the most typical problems currently
constraining the advancement of distributed real-time XIL simulation systems. It
demonstrated how low-latency real-time networks higher performants than the state-of-
the-art are required for significant progress to be made on modern distributed real-time
XIL systems. It presented the shortcomings of the current custom solution offered by
industry vendors and alluded to the promise of Reflective Memory (RM) technology as a
candidate solution to the problem.

This paper proposes a potential solution to the problem. It offers the utilization of Remote
Direct Memory Access (RDMA) [2] to significantly improve the typical implementation of
RM networks. It also shows how the two technologies can be combined onto an off-the-
shelf open architecture solution that implements a low-latency real-time network on
existing infrastructure that is orders of magnitude superior to the current state of the art.

The RDMA Technology
One of the obvious challenges of distributed XIL systems, real-time or not, is data exchange
between its multiple nodes. Data traffic has been an area of study for several years. Some
decades ago, the focus of the literature was on the creation of data transfer protocols that
allowed sufficient data to be moved from point A to point B. This focus yielded different
data exchange protocols that dominated the industry such as the typical RS-232 [3], RS-485
[4] and GPIB [5]. As data transfer requirements increased on more modern applications,
these protocols somewhat fell out of favor and started to be replaced by PCI bus and
consequently PCIe [6] bus, with their offer of order of magnitude higher data transfer
specifications.

As the data volume capacity and transfer rate increased, one characteristic of the protocol-
based approaches remained unchanged: the need for CPU time to be allocated to the data
movement task from these buses to the processing unit memory space. As data volume
and transfer rate requirements increased, so did the complexity of the data consuming
applications, driving the need for processing power to be even higher. The increase of
processing power on available low-cost CPU chips indeed followed Moore’s law. However,
this approach quickly found the wall of processor temperature control, hampering the
long-term needs for the continuously increasing data processing capacity.

Direct Memory Access (DMA) [7] was the community’s answer to this limitation. The
concept of DMA was as simple as it was elegant. Data movement from the PCI/PCIe bus to
the processing unit memory would be CPU-free, executed by a separate entity, the DMA
controller. With this, CPUs were free from the taxing data transferring task, and could be
dedicated to the processing data application. DMA on PCI/PCIe bus data transfer has
indeed been and still is currently used on data exchange systems. This technique however
is applied to single processor systems.

In the realm of distributed systems, the data exchange problem remained unsolved as
computational cost of network I/O is very high once the CPU kernel is involved in the
handling of network traffic. Unless a new paradigm was proposed, this problem would

genuen.com 2

most likely remain open even as network bandwidth on existing off-the-shelf infrastructure
continued to improve, as the burden of data exchange would only increase for the system
CPUs. This fact drove the community to focus research on expanding the single-CPU DMA
paradigm to systems of multiple nodes. The high-performance computing industry was
one of the biggest drivers of advancements of the technology. GPU clusters [8] and some
cloud computing experiments [9] were made on high-performance parallel computing
applications with some success. However, these approaches were still insufficient to meet
the low-latency requirements for the specific case of distributed real-time XIL applications.

The bullseye for distributed real-time XIL systems continued to be on a technology that
could offer CPU-free low-latency data exchange between multiple distributed nodes.
Remote Direct Memory Access (RDMA) is a protocol aimed directly at solving the high-
performance computing key steps [10]. Its chief concept is the utilization of hardware-
based network interface cards (NICs), often FPGA-based, that are responsible not only for
performing protocol control, but also for executing direct read/write memory operations on
remote nodes. The concept is the natural expansion of the single-CPU DMA idea onto
several distributed nodes.

As the CPU is not involved in the data exchange tasks and the dedicated NIC hardware is
responsible for read/write remote node memory operations, latency of such networks can
theoretically decrease significantly. Since the concept’s inception in the early 2000s,
significant progress was made on the commercialization of the technology. This allowed
for practical implementations to confirm that RDMA indeed is a significant network traffic
latency reducer. Pre-RDMA latency measurements that were typically revolved around the
millisecond range started to migrate to the tens of microseconds [11], culminating on some
sub-microsecond clock synchronization [12] over Infiniband [13] networks.

Reflective Memory
Another technology of interest to the message passing in multi-node systems’ problem is
Reflective Memory (RM) [14]. Like the RDMA technology presented on the previous section,
RM’s main target was the addressing of latency of distributed network applications.
However, RM was designed to facilitate multi-cast operations, an advantage over RDMA for
distributed real-time applications.

On an RM network, when a node needs to make a write operation to the RM network, it
places a typical TX request to the next node in the ring. The next node in turn reads the
data, updates its local reflective memory, and makes a TX request with the same data that
it just read to the next node down the ring network. The process is repeated until the data
makes a complete round in the network and is returned to the original writer node. One of
the main advantages of this technique is that RM nodes can make updates to a mapped
local memory range independently from the node’s CPU, as in [15]. Therefore, the local RM
copy can be updated on a much higher speed than a given application running on the
local CPU that will in turn consume the data. This allows for a higher-speed hardware-
based operation to guarantee a level of real-time determinism in the updating of the
virtual local memory.

Figure 1 illustrates an anecdotal RM network with four nodes. It is important to note that
each NIC of the network is responsible for controlling traffic and maintaining a local copy of

genuen.com 3

the RM. The application running on the computer can then access data from the RM as
needed.

Figure 1. Reflective Memory Typical Network

The concept of maintaining a local copy of the network state information to accelerate
data access and reduce latency indeed holds great potential as a solution to the distributed
real-time network problem. As such, there were several RM implementation variations
along the years in the search for the silver-bullet to the problem. However, scalability of the
network is a permanent issue across all different implementations. Evidently, the RM
topology illustrated in figure 1 has each NIC being a single point of failure for the network.
This fact drove the addition of redundancy nodes to accommodate mission-critical
applications as one of the possible workarounds. However, since each node maintains a
copy of the entire RM, the addition of redundant nodes creates an immediate increase in
RM size, which in turn, creates a detrimentally proportional relationship with latency.

A second obvious issue with this approach is that the RM network is not an off-the-shelf
solution. It cannot utilize network infrastructure that may already be in place in the
building, requiring specific and point-to-point installation.

genuen.com 4

The RM concept indeed carries promise, but a successful implementation must address
the typical scalability and network infrastructure shortcomings.

Proposed Solution
The discussion presented so far suggests that the solution for the distributed low-latency
real-time network problem may be found in a specific implementation of RM that solves its
two typical shortcomings. This paper proposes the utilization of the RDMA technology on a
RM implementation to address the issues.

As presented, each node on a RM network is a single point of failure. One path to address
this limitation would be the implementation of a star topology RM network. However, once
the RM nodes are distributed in a star topology, the original paradigm of read message-
>update RM->pass message along, is no longer applicable. At this point, a switched
solution becomes necessary, bringing back the problems of the other more typical data
exchanged approaches explored on a previous section of this work.

This paper proposes leveraging of RDMA technology for the data exchange layer of a RM
implementation that potentially doesn’t carry the same issues as its typical
implementations. Since RDMA was demonstrated to be a viable low-latency data exchange
approach, it carries the potential to enable a star topology RM implementation.

The second issue presented that is characteristic of RM networks is the requirement for a
custom network that doesn’t utilize existing infrastructure. RDMA was originally deployed
over Infiniband hardware. More recently, however, the need for reuse of existing network
infrastructure motivated the community to expand RDMA to be deployed over what is
called converged ethernet, or RoCE [16].

An important positive characteristic of RMs that made it a good fit for distributed real-time
applications is the easy of multicast operations. It was therefore important that a star
topology RM could maintain the comparable multicasting facilities. The answer to this
requirement comes from an atomic broadcast protocol over RDMA implementation [17].
Broadcast protocols make distributed services fault tolerant, as they keep a total order of
messages, allowing that multiple service replicas are kept in sync. However, they are
usually computationally expensive. The protocol utilized by the proposed approach
performs communication using one-sided RDMA writes, which do not utilize the remote
machine CPU, and is designed to minimize waiting on the critical path. Figure 2 illustrates
the high-level architecture of the proposed solution.

genuen.com 5

Figure 2. Proposed Solution Architecture

The proposed solution theoretically allows the RDMA-based RM implementation to
maintain the strengths of the typical RM solutions: CPU disengagement, low-latency
synchronization, and appropriate multicasting facilities. On the flip side it strives to remove
the constrains that arguably prevented typical RM implementations to be more widely
used on distributed real-time XIL systems: single point of failure, scalability, and reuse of
custom network infrastructure.

Experimental Results
Experiments were performed on Cloudlab, an open platform for running network
experiments that gives exclusive access to the nodes [18]. In particular, the experiments
used a cluster with nodes that have an Intel E5-2640v4 processor each running Ubuntu
18.04 (for reference, Cloudlab calls this cluster xl170). Each node has 64GB of DRAM and a
dual-port Mellanox ConnectX-4 25 GB NIC. The experiment network is confined to a single

genuen.com 6

chassis hosting a Mellanox 2410 switch that connects each core with 25Gb ethernet links
that support RDMA over Converged Ethernet (RoCE).

The RMs were all-to-all in the sense that all states of each node were broadcasted to every
other node on the network. Therefore, a complete copy of all network states was kept as
part of each node’s RM. A state is defined as a C-style floating point number.

Figure 3 shows the plots of RM depth versus latency for a RM with 3, 5 and 7 nodes.

Figure 3. RM Depth Latencies

A linear ramp characterizes direct proportionality between the depth of the RM and
network latency. In other terms, as the traffic in the network increases, the latency
increases in a linear proportion. As the number of nodes is increased, the linear
proportionality is maintained. In conclusion the latency of the RM network is directly
proportional to the overall network traffic. Figure 4 characterizes the average latency per
message size.

genuen.com 7

Figure 4. Latencies per Message Sizes

As the messages get larger in size, the per byte computational cost goes down to a given
limit fixed value. Below 100 nano seconds, the per byte cost is high due to the minimum
RDMA protocol packet size. Therefore, larger message transmissions shall take precedence
over smaller more frequent ones on the application layer for an overall lower
computational cost per byte transmitted.

Discussion and Future Work

Distributed XIL applications’ data exchange doesn’t require typically high network traffic as
does the more bandwidth-intensive applications such as data streaming. The main
objective of the data exchange on distributed XIL systems stem from the fact that each
node’s computation may require information that is being generated by one or more of the
distributed nodes, in the same real-time clock tick. Therefore, a network traffic of several
thousand states can accommodate a significant number of remote nodes exchanging
several states between each other.

As it can be seen on figure 3, latency values that would support rates well over 10kHz can
be achieved to accommodate significant enough traffic volume for distributed real-time

genuen.com 8

XIL applications. These initial experiment results show the proposed approach to be a
promising candidate to implement real-time distributed networks for this application
category.

Moreover, the current implementation can be optimized in a few specific ways to improve
results further. The source code can be refactored for performance as the first pass of its
implementation was focused on getting to the point of a qualitative order of magnitude
analysis for approach feasibility as early as possible. The validation of the solution through
the first pass analysis presented justifies refactoring of the prototype-level source code to
one of production quality which very likely will improve the latency results further.

Since it was demonstrated that network traffic is directly proportional to communication
latency, some techniques can be applied to expand the utility of the solution to a greater
number of XIL applications. The first one that shall be considered is the implementation of
a publish-subscribe approach to the creation of the multiple node RMs, as opposed to the
all-to-all method used on the first analysis.

On the all-to-all approach, all states of all nodes are transferred and maintained in each RM
node. On the publish-subscribe model, the network is configured with a priori information
of which states from which nodes are relevant to a given node’s computation. Each node’s
RM depth is then reduced to maintain only the states that will be used by the
corresponding node computation, instead of being a complete copy of all network nodes’
states. This evidently is an application specific improvement, albeit an important one. On
the all-to-all implementation, the RM real-time updates need to be the same for all nodes.
On the publish-subscribe model, the RM network gains an extra level of flexibility where
different nodes’ RMs may have different real-time update rates, depending on their depth.
Without loss of generality, this indicates that multi-rate XIL systems can then be
implemented.

Ultimately, data compression may also be a technique that can potentially reduce the
overall network traffic further. This may also carry an application specific aspect to the
implementation as it will depend on the type of state that a given application requires.
Therefore, data compression may have a bigger or smaller impact on the overall network
traffic, depending on the characteristics of the system states for a given application.

Lastly, as it can be noted on the experimental results section, the tests were executed on
nodes running regular non-real-time operating systems. Once the above network traffic
reduction techniques are implemented, the next natural step is the execution of the same
tests on a RM network composed only by nodes running real-time operating systems for
comparison of performance.

Conclusion

This paper presented a review of the existing network data exchange technologies, with
special focus on potential solutions for the distributed low-latency real-time network
problem. It presented RDMA as a low-latency data exchange technology of interest and RM
as a candidate for a proposed solution, provided that two important shortcomings were
addressed; scalability and lack of off-the-shelf offering.

genuen.com 9

It followed to propose a RDMA-based RM implementation as a possible solution to the
problem. The approach suggests the utilization of RoCE to facilitate the use of existing
network infrastructure. It implements RM on top of RDMA atomic broadcast operations to
reduce the typical computational burden of broadcast operations that are required to keep
distributed systems fault tolerant.

Initial experiment results demonstrated excellent latency performance on an all-to-all RM
implementation. Data suggests that a vast majority of real-time distributed XIL system
could be implemented on tens of microsecond real-time loop rates. The data also showed
latency to be directly proportional to network traffic. Therefore, future work shall focus on
reduction of network traffic through either data compression, a publish-subscribe
approach to reduce the amount of data kept by each local copy of RM or a combination of
both.

References

[1] Altoe, F (2022). Modern XIL Challenges.

[2] Romanow, A., & Bailey, S. (2003, February). An Overview of RDMA over IP. In Proceedings
of the First International Workshop on Protocols for Fast Long-Distance Networks
(PFLDnet 2003).

[3] Monteiro, A., & Jordan, T. R. (2004). Implementing communication between Windows
PCs and test equipment using RS-232 and Borland C++ Builder. Behavior Research
Methods, Instruments, & Computers, 36(1), 107-112.

[4] Axelson, J. (1999). Designing RS-485 circuits. Circuit Cellar, 107, 20-24.

[5] Tompkins, W. J., & Webster, J. G. (1988). Interfacing Sensors to the IBM PC (p. 2).
Englewood Cliffs: Prentice Hall.

[6] Bohm, P. (2010). Incremental and verified modeling of the PCI express protocol. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(10), 1495-
1508.

[7] Riesbeck, C. K., & Martin, C. (1986). Direct memory access parsing. Experience, memory,
and reasoning, 209-226.

[8] Fan, Z., Qiu, F., Kaufman, A., & Yoakum-Stover, S. (2004, November). GPU cluster for high
performance computing. In SC'04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing (pp. 47-47). IEEE.

[9] Ledyayev, R., & Richter, H. (2014). High performance computing in a cloud using
openstack. Cloud Computing, 108-113.

[10] Von Eicken, T., Basu, A., Buch, V., & Vogels, W. (1995). U-Net: A user-level network
interface for parallel and distributed computing. ACM SIGOPS Operating Systems
Review, 29(5), 40-53.

[11] Liu, J., Wu, J., Kini, S. P., Wyckoff, P., & Panda, D. K. (2003, June). High performance
RDMA-based MPI implementation over InfiniBand. In Proceedings of the 17th annual
international conference on Supercomputing (pp. 295-304).

genuen.com 10

[12] Litz, H., Fröening, H., Nuessle, M., & Brüening, U. (2007). A hypertransport network
interface controller for ultra-low latency message transfers. HyperTransport Consortium
White Paper.

[13] Pfister, G. F. (2001). An introduction to the infiniband architecture. High performance
mass storage and parallel I/O, 42(617-632), 102.

[14] Jovanovic, M., & Milutinovic, V. (1999). An overview of reflective memory systems. IEEE
concurrency, 7(2), 56-64.

[15] Bian, Z., Xie, L., & Wu, B. The FPGA Design and Implementation of Reflective Memory
Card Based on the PCIE Bus.

[16] Beck, M., & Kagan, M. (2011, September). Performance evaluation of the RDMA over
ethernet (RoCE) standard in enterprise data centers infrastructure. In Proceedings of the
3rd Workshop on Data Center-Converged and Virtual Ethernet Switching (pp. 9-15).

[17] Izraelevitz, J., Wang, G., Hanscom, R., Silvers, K., Lehman, T. S., Chockler, G., & Gotsman, A.
(2022). Acuerdo: Fast Atomic Broadcast over RDMA.

[18] University of Utah. 2022. CloudLab. (2022). https://www.cloudlab.us/.

